Optimization under fuzzy rule constraints

نویسندگان

  • Christer Carlsson
  • Robert Fullér
  • Silvio Giove
چکیده

Suppose we are given a mathematical programming problem in which the functional relationship between the decision variables and the objective function is not completely known. Our knowledge-base consists of a block of fuzzy if-then rules, where the antecedent part of the rules contains some linguistic values of the decision variables, and the consequence part is a linear combination of the crisp values of the decision variables. We suggest the use of Takagi and Sugeno fuzzy reasoning method to determine the crisp functional relationship between the objective function and the decision variables, and solve the resulting (usually nonlinear) programming problem to find a fair optimal solution to the original fuzzy problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability optimization problems with multiple constraints under fuzziness

In reliability optimization problems diverse situation occurs due to which it is not always possible to get relevant precision in system reliability. The imprecision in data can often be represented by triangular fuzzy numbers. In this manuscript, we have considered different fuzzy environment for reliability optimization problem of redundancy. We formulate a redundancy allocation problem for a...

متن کامل

Optimization under fuzzy linguistic rule constraints

Suppose we are given a mathematical programming problem in which the functional relationship between the decision variables and the objective function is not completely known. Our knowledge-base consists of a block of fuzzy if-then rules, where the antecedent part of the rules contains some linguistic values of the decision variables, and the consequence part is a linear combination of the cris...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Rule Weight Optimization and Feature Selection in Fuzzy Systems with Sparsity Contraints

In this paper, we are dealing with a novel data-driven learning method (SparseFIS) for Takagi-Sugeno fuzzy systems, extended by including rule weights. Our learning method consists of three phases: the first phase conducts a clustering process in the input/output feature space with iterative vector quantization. Hereby, the number of clusters = rules is pre-defined and denotes a kind of upper b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003